HCMC UNIVERSITY OF TECHNOLOGY AND EDUCATION AUTOMATION AND CONTROL ENGINEERING **TECHNOLOGY**

Faculty of Electrical and Electronic Engineering

Department of Automatic Control

Undergraduate Program

SYLLABUS

1. Course name: CAD FOR AUTOMATION AND CONTROL ENGINEERING

2. Course code: CADA430546

3. Credits: 3 (3/0/6)

Duration: 15 weeks (45 hours main course and 90 hours self-study)

4. Instructors:

1- Assoc.Prof. PhD. Le Chi Kien

2- M.Eng. Tran Phi Vu

5. Course conditions

Prerequisites: Basic electronics, Electrical Circuits

Corequisites: N/A

6. Course description

This course includes an introduction to Computer-Aided Design (CAD) tools and their applications to Automation and Control Engineering.

7. Course Goals

Goals	Goal description (This course provides students:)	ELOs
G1	To implement software for Automation and Control Engineering	1.1, 1.2, 2.2, 4.3, 4.4, 1.3

^{*} Note: High: H; Medium: M; Low: L

8. Course Learning Outcomes (CLOs)

CLOs		Description (After completing this course, students can have:)	Outcome
G1	G1.1	Students will understand the role of CAD in electrical component and system design by creating geometric models and engineering drawings	1.1, 1.2, 2.2, 4.3, 4.4
	G1.2	Students will understand the basic mathematics fundamental to CAD software	1.3

9. Study materials

- Textbooks

[1] Quyen Huy Anh, Giao trinh CAD trong ky thuat dien, NXB DHQG TP.HCM, 2011

- References

[2] Miltiadis A.Boboulos, CAD-CAM & Rapid prototyping Application Evaluation, 2010

10. Sudent Assessments

- Grading points: 10
- Planning for student assessment is followed:

Type	Contents	Linetime	Assessment techniques	CLOs	Rates (%)
	Midterm				50
Exercise 01	Blinking LED Circuit	Week 6	Electrical circuit design file	G1.1 G1.2	10
Exercise 02	Draw a electric circuit using ePlan Electric	Week 12	Electrical circuit design file	G1.1 G1.2	10
Test 01	Two digit BCD counter circuit	Week 8	Electrical circuit design file	G1.1 G1.2	15
Test 02	Schematic diagram using ePlan Electric	Week 14	Electrical circuit design file	G1.1 G1.2	15
					50
Final Exam	The exam covers all the contents related to the ELOs of the course		Electrical circuit design file	G1.1 G1.2	

11. Course details:

	rse details:		
Week	Contents	CLOs	
	Chapter 1: Role of CAD in automation and control design (6/0/12)		
	A/ Contents and teaching methods: (6)		
	Contents:		
	1.1. CAD in automation and control design		
	1.2. NI Multisim software		
	Teaching methods:	G1.1	
1~2	+ Traditional lectures using PowerPoint to review basic knowledges of	G1.2	
1 2	steel structures course, to demonstrate large applications of		
	automation system. A series of diagnostic questions will be also		
	used to estimate students knowledges.		
	+ Questions		
	B/ Self-study contents: (12)		
	+ Find on the Internet the automation system and list the softwares		
	used in automation and control design.		
	Chapter 2: Components of Multisim (6/0/12)		
	A/ Contents and teaching methods: (6)		
	Contents:		
	2.1. Basic components	G1.1	
	2.2. Analog and digital components	G1.1 G1.2	
3~4	Teaching methods:	01.2	
	+ Theoretical lectures		
	+ Questions		
	B/ Self-study contents: (12)		
	+ Active and passive components		
	+ Op-amp application circuits		
	Chapter 3: Instruments of Multisim (6/0/12)		
	A/ Contents and teaching methods:(6)		
5~6	Contents:	G1.1	
	3.1. Introduction	G1.2	
	3.2. Bode plotter		

	Teaching methods:		
	+ Theoretical lectures		
	+ Questions		
	B/ Self- study contents: (12)		
	+ Instruments in industry		
	+ Bode plotter applications		
	Chapter 4: Schematic and Simulation (6/0/12)		
	A/ Contents and teaching methods: (6)		
	Contents:		
	4.1. Component database	G1 1	
	4.2. Simulation	G1.1	
7~8	Teaching methods:	G1.2	
	+ Theoretical lectures		
	+ Questions		
	B/ Self- study contents: (12)		
	+ Find the database in Internet		
	+ Circuit analysis		
	Chapter 5: MCU Simulation (6/0/12)		
	A/ Contents and teaching methods: (6)		
	Contents:		
	5.1. Hardware simulation	C1 1	
	5.2. Import data	G1.1	
9~10	Teaching methods:	G1.2	
	+ Traditional lectures using PowerPoint		
	+ Questions		
	B/ Self- study contents: (12)		
	+ PIC microprocessor		
	+ MCU configuration		
	Chapter 6: PCB Board (6/0/12)		
	A/ Contents and teaching methods: (6)		
	Contents:		
	6.1. Check the circuit	G1.1	
11~12	6.2. Ultiboard	G1.1 G1.2	
11 12	Teaching methods:	G1.2	
	+ Traditional lectures using PowerPoint		
	+ Questions		
	B/ Self-study contents: (12)		
	+ PCB board international standard		
	Chapter 7: ePlan Introduction (6/0/12)		
	A/ Contents and teaching methods: (6)		
	Contents:		
13~14	7.1. Introduction	G1.1	
	7.2. Circuit information	G1.2	
	Teaching methods:		
	+ Traditional lectures using PowerPoint		
	+ Questions B/ Self-study contents: (12)		
	+ ePlan Electric other softwares		
15	Chapter 8: ePlan P& ID (3/0/6)		

A/ Contents and teaching methods: (3)	
Contents:	
8.1. P&ID flow diagram	G1.1
Teaching methods:	G1.2
+ Traditional lectures using PowerPoint	
+ Questions	
B/ Self-study contents: (6)	
+ ePlan PPE	
+ Component symbols	

12. Learning ethics:

- Home assignments and projects must be done by the students themselves. Plagiarism found in the assessments will get zero point.

13. First approved date: August 01, 2012

14. Approval level:

Dean Department Instructor

Assoc. Prof. PhD. Nguyen
Minh Tam
Assoc. Prof. PhD. Truong
Dinh Nhon
Kien

15. Syllabus updated process

1 st time: Updated content dated	Instructors
2 st time: Updated content dated	Head of department